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Experimental and theoretical studies of the effect of an ultrasonically absorptive
coating (UAC) on hypersonic boundary-layer stability are described. A thin coating
of fibrous absorbent material (felt metal) was selected as a prototype of a practical
UAC. Experiments were performed in the Mach 6 wind tunnel on a 7◦ half-angle sharp
cone whose longitudinal half-surface was solid and other half-surface was covered
by a porous coating. Hot-wire measurements of ‘natural’ disturbances and artificially
excited wave packets were conducted on both solid and porous surfaces. Stability
analysis of the UAC effect on two- and three-dimensional disturbances showed that
the porous coating strongly stabilizes the second mode and marginally destabilizes the
first mode. These results are in qualitative agreement with the experimental data for
natural disturbances. The theoretical predictions are in good quantitative agreement
with the stability measurements for artificially excited wave packets associated with
the second mode. Stability calculations for the cooled wall case showed the feasibility
of achieving a dramatic increase of the laminar run using a thin porous coating of
random microstructure.

1. Introduction
For small free-stream disturbances and negligible surface roughness, laminar–

turbulent transition is due to amplification of unstable modes in the boundary
layer (Malik, Zang & Bushnell 1990; Reshotko 1994). In this case, stability theory
and experiment are basic tools for predicting transition loci and developing laminar
flow control methods (Mack 1984; Reshotko 1969; Malik 1989). For essentially
two-dimensional supersonic and hypersonic flows, the initial phase of transition is
associated with excitation and amplification of the first and/or second modes.

The first mode is an extension to high speeds of the Tollmien–Schlichting (TS)
waves, which represent viscous instability at low Mach numbers. The inviscid
nature of the first mode begins to dominate when the Mach number increases,
since compressible boundary-layer profiles contain a generalized inflection point
(Mack 1984). This mode may be stabilized by wall cooling, suction and favourable
pressure gradient. Another way to damp the first mode is by a very thin perforated
sheet stretched over a plenum chamber (Carpenter & Porter 2001). When the TS
waves propagate along the boundary layer, the fluctuating pressure forces air in
and out of the plenum chamber that modifies the wall boundary conditions for
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the disturbances. Carpenter & Porter (2001) conducted a stability analysis for the
incompressible boundary layer on a flat plate and showed that the TS waves are
stabilized when the wall admittance phase is close to 1

2
π. Their analysis is based

on linear stability theory for the boundary layer with modified boundary conditions
on the perforated wall. Certain aspects of this theoretical modelling are similar to
the approach developed by Gaponov (1971, 1975) and Lecoudis (1978) for subsonic
boundary layers and by Gaponov (1977) for moderate supersonic flows. Whether the
experiments will confirm the theoretical predictions remains to be seen. Carpenter &
Porter (2001) indicated several factors that could lead to problems in practice. The
theory requires the admittance phase to be very close to 1

2
π. This can be achieved only

by minimizing the losses through the pores, which leads to severe constraints on the
perforated sheet thickness. Another difficulty is associated with pressure variations
along the perforated panel. This may lead to areas of quasi-steady inflow and outflow,
thereby modifying the mean flow and its stability characteristics.

The second mode results from an inviscid instability driven by a region of supersonic
mean flow relative to the disturbance phase velocity. This instability belongs to the
family of trapped acoustic modes propagating in a waveguide between the wall and
the sonic line (Mack 1984; Guschin & Fedorov 1989). The existence of the second
mode was established by the experiments of Kendall (1975), Demetriades (1974),
Stetson et al. (1983) Stetson & Kimmel (1992a, b) and Kimmel, Demetriades &
Donaldson (1995). Once the second mode sets in, it becomes the dominant instability
since its growth rate tends to exceed that of the first mode. For insulated surfaces,
this occurs for Mach numbers larger than 4. For cooled surfaces, the second mode
can dominate at even lower Mach numbers (Lysenko & Maslov 1984). In contrast
to the TS instability, wall cooling destabilizes the second mode. This effect can be
important in the transition of hypersonic flows. Since the temperature of a hypersonic
vehicle surface is relatively small (less than 0.2 of the adiabatic wall temperature),
the TS instability is eliminated by natural cooling, whereas the second mode remains
unstable and may trigger early transition. Increasing the laminar run requires the
second-mode instability to be diminished.

In high-speed flows, the second mode is associated with disturbances of relatively
high frequency corresponding to the ultrasonic band. Malmuth et al. (1998) assumed
that a passive ultrasonically absorptive coating (UAC) of fine porosity may suppress
these fluctuations and, at the same time, may not trip the boundary layer owing to
roughness effects, i.e. the passive UAC may stabilize the second and higher modes
by a disturbance energy extraction mechanism. This hypothesis was examined by
an inviscid linear stability analysis. Using the WKB method, Malmuth et al. (1998)
formulated the boundary condition on an ultrasonically absorptive wall for the second
and higher modes, and showed that the absorption does cause a strong stabilization
of the second mode. Later, Fedorov & Malmuth (2001) analysed the absorption effect
at finite Reynolds numbers using viscous stability theory and found that viscosity
weakly affects the stabilization mechanism. They also considered an ultrasonically
absorptive surface of a particular type, namely, a wall covered by a porous coating
with cylindrical blind micro-holes, and showed that a relatively thin coating (of
thickness ∼ 0.1 of the boundary-layer displacement thickness) can dramatically reduce
the second-mode growth rate. In contrast to the TS waves (Carpenter & Porter 2001),
the second mode is effectively suppressed without a plenum chamber underneath the
porous sheet. This significantly simplifies practical application.

These theoretical findings lead to the expectation that a passive porous coating
may be exploited for hypersonic laminar flow control. The concept was verified in the
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California Institute of Technology GALCIT T-5 shock tunnel (Rasheed et al. 2002) by
testing a 5◦ half-angle sharp cone. The cone in these tests had one half of its surface
solid and the other a porous sheet that was perforated with equally spaced blind
cylindrical holes. The average hole diameter and depth were respectively 60 µm and
500 µm. Average spacing between the holes was 100 µm. The model was instrumented
by thermocouples, and the transition onset point was determined from the Stanton
number distributions measured simultaneously on both sides of the model for each
run. The experiments were performed for the ranges of the free-stream total enthalpy
4.18 � H0 � 13.34 MJ kg−1 and the free-stream Mach number 4.59 � M∞ � 6.4. This
study revealed that the porous coating delays transition by a significant amount. For
the majority of runs, the boundary layer on the porous surface was laminar up to the
model base, whereas transition on the untreated solid surface was observed halfway
along the cone. These experiments qualitatively confirmed the theoretical prediction
of Fedorov & Malmuth (2001). However, quantitative comparison was not feasible
because the cone was not long enough to measure the transition locus on the porous
surface. Since the boundary-layer disturbances were not measured, these experiments
did not give direct evidence of the second mode instability, and its effect on the
transition process was not clear.

A regular microstructure UAC is one possible good starting point for validation
of the hypersonic laminar flow control concept. However, most porous materials,
which provide efficient absorption of acoustic disturbances, have a random porosity.
A practical UAC should be symbiotic with thermal protection systems (TPS) of actual
hypersonic vehicles. Since the majority of TPS materials have random microstructures,
a randomly porous coating is of most interest for applications. This motivated the
theoretical and experimental studies of a randomly porous UAC to be discussed
herein. The investigation is focused on direct measurements of the boundary-layer
disturbances and verification of the stability theory predictions.

2. Experimental apparatus
2.1. Wind tunnel

The experiments were conducted in the T-326 hypersonic blow-down wind tunnel
with open-jet test section (Grigoriev et al. 1972) at the Institute of Theoretical and
Applied Mechanics (ITAM) of the Siberian Branch of Russian Academy of Sciences
in Novosibirsk. The diameter of the axisymmetric contoured nozzle of this facility
is 200 mm. Run-time can be as long as 30 min, subject to a Mach number flow-field
non-uniformity of 0.7% in the flow core at a freestream Mach number M∞ ≈ 6.
The test core diameter is approximately 180 mm. Typical of conventional hypersonic
wind tunnels, the noise level is about 1%. During the experiment, pressure, P0, and
temperature, T0, in the settling chamber are kept constant, with accuracies of 0.06%
and 0.25%, respectively.

2.2. UAC parameters

Characteristics of a porous coating must meet certain requirements to suppress the
boundary-layer instability effectively. For the wind tunnel tests, the boundary-layer
thickness on a 7◦ half-angle cone is approximately 1mm (see § 4.1 and figure 8).
According to the experimental observations of Kendall (1975), Demetriades (1974),
Stetson et al. (1983), Stetson & Kimmell (1992a, b) and Kimmel et al. (1995), the
second-mode wavelength is approximately twice the boundary-layer thickness, i.e. it
is ∼ 2mm in the case considered. The characteristic size of the porous coating should
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Figure 1. Magnified sixty-fold image of the upper surface of the felt-metal coating;
1 × 1 mm2 grid.

be much smaller than the disturbance wavelength to avoid resonant interactions
with the porous-layer microstructure and minimize roughness effects. On the other
hand, the pore size should be large enough to diminish the rarefied gas effect and
provide intensive absorption of the boundary-layer disturbances in the frequency band
200–400 kHz associated with the second mode. Compromising these constraints we
chose the felt-metal coating, which is composed of stainless steel fibres of diameter
d =30 µm. To provide integrity of the coating, the fibres were hard sintered randomly
on a solid stainless steel sheet of thickness 0.245 mm. Then, they were rolled to a
porosity of 75%. The porous layer has a thickness of 0.75 mm resulting in a total
thickness of the felt metal sheet of 1 ± 0.1 mm. Magnified images of the porous surface
(one of them is shown in figure 1) reveal that the average pore size is ≈ 100 µm. This
results in 20 pores per boundary-layer disturbance wavelength.

2.3. Model

The model was a 7◦ half-angle sharp cone of 500 mm length (see figure 2) consisting
of three parts: (i) a sharp cone 65 mm in length and 0.1 mm nose radius; (ii) a middle
part 65 mm in length containing an electric glow discharge perturber; and (iii) a base
portion 370 mm in length. Half of the base part is covered by a felt-metal sheet as
shown in figure 2. Roughness of the solid surface is 0.6 µm. The model is equipped
with a three-dimensional perturber providing a high-frequency glow discharge in a
small chamber. Artificial disturbances generated by the perturber are introduced into
the boundary layer through an orifice of 0.4 mm diameter located at a distance of
69 mm from the model nose. The perturber construction is similar to that used for
excitation of artificial wave packets in supersonic boundary layers (Kosinov, Maslov
& Shevelkov 1990). Maslov et al. (2001) have successfully applied this technique to
hypersonic flows.
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Figure 2. Schematics of the model; dimensions are in mm.

A major challenge in the construction of the model was attachment of the felt-
metal sheet to the basic cone. After bending, the porous layer expanded, leading
to its thickening by approximately 20%. This complicated the determination of the
undercut of the basic cone to allow flash attachment of the felt-metal sheet. To
minimize mismatch between the porous and solid surfaces, the felt-metal sheet was
attached to the base cone and then ground until the surface irregularity was reduced
to 0.05 mm.

Another difficulty was detachment of the felt-metal filaments because of sheet
stretching. Examination of the porous surface under a microscope showed that some
of the detached filaments protrude from the surface approximately 3–4 mm. These
filaments (about 1500–2000) were manually trimmed off.

The model was installed at zero angle of attack. The estimated misalignment
between the cone axis and the free-stream direction was less than 0.05◦. This allows
three-dimensional distortions of the mean flow to be neglected.

2.4. The measuring system

To determine the free-stream parameters, IPD-89008 pressure gauges and k-type
thermocouples measured pressures and temperatures in the settling chamber and
provided accuracies of 0.15% and 0.1%, respectively. The free-stream Mach number
was determined using Pitot measurements.

Two traverse gears were used in the experiment. A three-component traverse system
provided X, Y , Z displacements of the hot-wire probe to an accuracy of 0.01 mm. A
special unit was used to roll the whole cone around its X-axis and measure transverse
distributions of wave packets. The roll angle, Θ , was controlled within an accuracy
0.1◦.

The high-frequency glow discharge system consisted of clock and high-voltage
generators. The clock generator signal was used to trigger the high-voltage generator
and synchronize hot-wire measurements with the high-voltage generator initiation.
The high-voltage generator produced voltage pulses up to 2000 V, of 1 µs duration
and pulse frequency up to 400 kHz. During the run, the glow discharge was controlled
visually through optical windows and a mirror in the test section.

A constant-current hot-wire anemometer, custom built at ITAM, was used to
measure mass flow fluctuations. The hot-wire probes were made of tungsten wire of
5 µm diameter and 1 mm length which was welded to pointed stings. The overheat
ratio was 0.5 and the frequency response of the hot-wire anemometer was 500 kHz.
The constant and alternating components of the hot-wire signal were measured by
a 12-bit analogue-digital converter with a sampling frequency of 5 MHz. At each
measurement station, 98 time-series of 4096 samples were acquired. An analogue
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Surface P0 (MPa) T0 (K) M∞ Me Re1∞ (m−1) Re1e (m−1) Tw/T0 f (kHz)

Solid 1.0 ± 0.002 395 ± 3 5.92 5.3 11.8 × 106 15.4 × 106 0.79–0.83 280

Porous 1.0 ± 0.002 391 ± 1 5.92 5.3 12.0 × 106 15.6 × 106 0.81–0.84 280

Table 1. Basic parameters.

signal of the main generator initiating glow discharge was used to trigger ADC.
Details of the processing techniques have been discussed by Maslov et al. (2001).

2.5. Processing of the disturbance characteristics

To obtain the amplitude, A, and phase, Φ , of artificially excited disturbances, the
discrete Fourier transform is used

A(X, Y, Θ) exp(iΦ(X, Y, Θ)) =
2

N

N∑
j=1

ρUn(X, Y, Θ, tj ) exp(−2iπf tj ),

where N is the sample count in the time-series, f is the disturbance frequency, and
ρUn(X, Y, Θ, tj ) is the time-series of mass flow pulsations. The artificial wave packet is
represented as a decomposition of elementary waves. For this purpose the transverse
wave spectra are calculated as

SA(x, β) exp(iSF (x, β)) =

∫ Θ0

−Θ0

A(x, Θ) exp(iΦ(x, Θ)) exp(−iβΘ)dΘ,

where SA and SF are the amplitude and phase spectra with respect to the transverse
wave number β .

3. Measurement results
Basic experimental parameters are given in table 1, where Re1 is the unit Reynolds

number, Tw is the wall temperature, f is the frequency of artificial disturbances,
and the subscript e denotes quantities at the upper boundary-layer edge. Hy-
personic viscous–inviscid interaction is neglected, since the interaction parameter
χ = M3

e /
√

ReX (Hayes & Probstein 1959) is less than 0.1 for the region X > 94 mm,
where all measurements are conducted.

Figures 3(a) and 3(b) show the mean flow velocity U/Ue and the r.m.s. mass flow
pulsations versus the vertical coordinate, Y , normalized with respect to the boundary-
layer thickness δ (U (δ) = 0.99Ue). Symbols correspond to the hot-wire measurements
on the (i) porous and (ii) solid surfaces at X = 224.9 mm; the solid line (iii) in
figure 3(a) shows the self-similar solution of the laminar boundary-layer equations
discussed in § 4.1. The good agreement between the theoretical and experimental mean
flow profiles indicates that the boundary layers on both surfaces are laminar. Similar
results were obtained at the cross-sections where hot-wire measurements were made.
Note that the disturbance profiles for both surfaces have maxima located at Y/δ = 0.8
(see figure 3b).

Mass flow disturbance spectra were measured at the normal coordinate Y cor-
responding to the disturbance maxima. Hot-wire measurements were conducted at
the equally spaced X-stations given in table 2. The first station S1 was chosen
near the leading edge of the porous surface (X = 185 mm). Disturbance spectra are
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Figure 3. Comparison profiles of (a) mean velocity and (b) r.m.s. mass-flow pulsations for
(i) porous and (ii) solid surfaces; (iii) self-similar profile.

Surface S1 S2 S3 S4 S5

Solid 192.8 217.8 242.9 268.0 293.0
Porous 189.1 214.2 239.2 264.3 289.4

Table 2. Locations of the measurement stations (X mm).

shown in figures 4(a) and 4(b) for the solid and porous surfaces, respectively. At
the upstream station S1, the spectra are similar on both surfaces. Downstream from
S1, the spectrum evolutions are quite different. On the solid surface the disturbance
spectra look very similar to those measured by Stetson & Kimmel (1992b) on a sharp
cone at M∞ =8; they correspond to the second mode instability. At the upstream
station S1, the second mode is observed at the frequency f ≈ 340 kHz. Downstream
from S1, its amplitude quickly increases, whereas its central frequency decreases to
275 kHz at the last station S5. On the porous surface, the low-frequency disturbances
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Figure 4. Disturbance spectra for (a) solid and (b) porous surfaces; curves (i)–(v) correspond
to stations S1–S5 of table 2.

associated with the first mode are destabilized in the frequency band 100–200 kHz.
At the upstream station S1, a small increase of the disturbance spectrum is noticeable
near the frequency 350 kHz that may be relevant to the second mode. However, there
is no evidence of the second mode at stations S2–S5. These data demonstrate that
the porous coating strongly stabilizes the second mode and destabilizes the first mode
under natural flow conditions.

To investigate the second-mode stabilization effect a series of experiments was
conducted with artificially excited wave packets. The artificial disturbances were
generated at a frequency of 280 kHz, which corresponds to the maximum of the
second-mode amplitude observed on the solid surface at station S5 for natural
disturbances (see the spectrum (v) in figure 4a). At first, the artifical wave packet was
measured on the solid surface. Then, the middle part with the perturber was rolled
180◦, and experiments were carried out on the porous surface. This approach allows
for excitation of the wave packets with almost identical initial amplitudes on both
surfaces. The disturbance characteristics were measured at the same stations as for
natural disturbances (see table 2).
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Figure 5. Transverse distributions of amplitude of artificial wave packet for (a) solid and
(b) porous surfaces; curves (i)–(v) correspond to stations S1–S5 of table 2.

The disturbance phase measured at the wave packet centre is a linear function of X

in the range X = 240–300 mm. For the solid and porous surfaces, the phase velocities
are equal to (0.896 ± 0.03)Ue, which is consistent with the value 0.916Ue calculated
for the second mode using the theoretical model of § 4.

Transverse distributions of the wave packet amplitude are shown in figures 5(a)
and 5(b) for the solid and porous surfaces, respectively. These distributions have a
single peak in the middle of the wave packet (at Θ ≈ 0) for all X-stations. The
porous coating reduces the disturbance amplitude more than twice. The transverse
wave spectra (the β-spectra resulting from the Fourier transform of the transverse
distributions) are shown in figures 6(a) and 6(b). These spectra have a single peak
at β = 0 for all X-stations, i.e. two-dimensional waves are dominant. This is typical
for the second mode. On the porous surface, the maximum amplitude is essentially
smaller than on the solid surface, clearly demonstrating boundary-layer stabilization.

Longitudinal distributions of the mass flow disturbance amplitude SA0 at β =0 are
shown in figure 7 for the solid (i) and porous (ii) surfaces. The amplitudes of natural
disturbances with a frequency f = 280 kHz are also shown for comparison. They were
normalized to match the distributions at the initial X-station. On the solid surface,
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Figure 6. β-spectra for (a) solid and (b) porous surfaces; curves (i)–(v) correspond to stations
S1–S5 of table 2.
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Figure 7. Longitudinal distribution of mass flux pulsations amplitude for solid ((i) artificial
and (iii) natural disturbances) and porous ((ii) artificial and (iv) natural disturbances) surfaces.
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the disturbance amplitude exponentially grows up to X = 243 mm. Downstream of
this location, the amplification rate decreases. On the porous surface, the amplitude
increases approximately twice as slowly as on the solid surface. Moreover, disturbance
decay begins downstream of the station X = 264 mm. The amplitude distributions of
artificial and natural disturbances are very close to each other. This indicates that
two-dimensional waves are dominant in the natural disturbance field in the same
manner as for artificial wave packets.

4. Stability analysis
4.1. Mean flow

For the laminar boundary layer on a flat plate or a sharp cone at zero angle of attack,
the boundary-layer equations are written in the self-similar form (Hayes & Probstein
1959)

(Cf ′′)′ + ff ′′ = 0, (4.1)(
C

Pr
g′

)′

+ fg′ +
U ∗2

e

H ∗
e

[
C

(
1 − 1

Pr

)
f ′f ′′

]′

= 0, (4.2)

C =
ρ∗µ∗

ρ∗
e µ

∗
e

,
U ∗2

e

H ∗
e

=
(γ − 1)M2

e

1 + 1
2
(γ − 1)M2

e

,
ρ∗

e

ρ∗ =
(
1 + 1

2
(γ − 1)M2

e

)
g − 1

2
(γ − 1)M2

e f
′2.

(4.3)

Hereinafter, f ′(η) = U ∗/U ∗
e , g(η) = H ∗/H ∗

e , ρ, µ, P r and γ denote the stream-
wise velocity, total enthalpy, density, viscosity, Prandtl number and specific heat
ratio, respectively; primes denote differentiation with respect to η, and asterisks
denote dimensional quantities. The independent variables are given by the Howarth–
Dorodnitsyn transformations and Mangler transformation by the coordinates

ξ =

∫ x∗

0

ρ∗
e µ

∗
eU

∗
e r∗2j

w dx∗, η =
U ∗

e r∗j
w√

2ξ

∫ y∗

0

ρ∗ dy∗, (4.4)

where x is along an external streamline, y is normal to the body surface, rw is the
distance from the symmetry axis to the wall surface; j = 0 for two-dimensional
flow and j = 1 for axisymmetric flow. The porous coating is assumed to affect the
mean flow only weakly. Accordingly, the conventional no-slip boundary conditions
are imposed on the wall surface

η = 0: f = f ′ = 0, g = gw (or g′ = 0 for adiabatic wall), (4.5)

η → ∞: f ′ = 1, g = 1. (4.6)

In all calculations discussed hereinafter, the fluid is a perfect gas of γ = 1.4 and
Pr = 0.708. The viscosity temperature dependency is approximated by Sutherland’s
law

µ(T ) =
(1 + S)

(T + S)
T 3/2, (4.7)

where S = 110/T ∗
e , µ = µ∗/µ∗

e and T = T ∗/T ∗
e are non-dimensional viscosity and

temperature. The mean-flow parameters correspond to the experimental conditions
discussed in § 3: Me = 5.3; T ∗

e = 59.3 K; the local unit Reynolds number Re1e =
U ∗

e /ν∗
e = 15.5 × 106 m−1; the wall temperature, T ∗

w = 5.5 T ∗
e , is close to the adiabatic

wall temperature.
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Figure 8. Boundary-layer thickness at Re1 = 15.5 × 106 m−1, Me = 5.3, Te = 59.3 K, and the
wall temperature Tw = 5.5 Te . —, theory; �, experiment, porous surface; �, experiment, solid
surface.

Figure 8 shows that the theoretical boundary-layer thickness δ correlates well with
the experimental data for the solid and porous surfaces of the cone. Since wall
temperature, T ∗

w ≈ 326 K, is close to room temperature, thermal deformations of the
porous coating during the wind-tunnel run are neglected.

4.2. Linear stability problem

The stability analysis herein includes the non-parallel effect associated with down-
stream growth of the boundary-layer thickness. Cone surface curvature and conical
divergence of streamlines are neglected in this model. It is based on the method
developed by Gaster (1974) for incompressible boundary layers and extended by
Padhye & Nayfeh (1979) to compressible flows. This method (with insignificant
variations) has been used to investigate the non-parallel effect on stability of
supersonic boundary layers (Gaponov 1980; El-Hady 1980; Tumin & Fedorov 1982).
Its extension to the case of multiple modes was discussed in Zhigulev & Tumin (1982)
and Fedorov & Khokhlov (2002).

Following Fedorov & Khokhlov (2002), we outline the non-parallel stability analysis
for a monochromatic wave. The coordinates (x, y, z) are made non-dimensional using
the boundary-layer scale l∗ =

√
ν∗

e L
∗/U ∗

e , where the distance L∗ from the leading
edge is assumed to be much larger than l∗, and the ratio ε = l∗/L∗ is treated
as a small parameter. Time t and pressure P are referenced to l∗/U ∗

e and ρ∗
e U

∗2
e ,

respectively; other flow characteristics are non-dimensionized by normalizing them to
upper boundary-layer edge quantities. Introducing the slow variable, x1 = x∗/L∗ = εx,
we specify the mean-flow velocity components (U, V ) and temperature T as

U = U (x1, y), V = εV0(x1, y), T = T (x1, y). (4.8)

A monochromatic disturbance is represented by the vector function

Z =

(
u,

∂u

∂y
, ν, p, θ,

∂θ

∂y
, w,

∂w

∂y

)T

,

(4.9)
Z(x, y, z, t) = F(x, y) exp(i βz − i ωt),
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where u, v, w, p and θ are velocity components, pressure and temperature; β = β∗l∗

and ω = ω∗l∗/U ∗
e . The amplitude vector-function F(x, y) satisfies a system of partial

differential equations that result from a Fourier transform of the linearized Navier–
Stokes equations with respect to time and the z-coordinate. These equations with the
boundary conditions can be written in the matrix-operator form

H(y, ∂y, x1, ε∂x1
, ω, β)F = 0. (4.10)

y = 0: F1 = AxF4, F3 = AyF4, F5 = AθF4, F7 = AzF4, (4.11)

y → ∞: F1, F3, F5, F7 → 0. (4.12)

Here admittances Ax , Ay , Az and thermal admittance Aθ are complex quantities,
which couple velocity and temperature disturbances with the pressure perturbations
on the porous surface. They depend on properties of the porous material, mean flow
characteristics on the wall surface, and disturbance frequency. These dependencies will
be specified in § 4.3. For the solid wall Ax = Ay = Az = Aθ = 0, which corresponds
to no-slip conditions and zero temperature perturbation on a surface of high thermal
conductivity.

We consider a partial solution of the problem (4.10)–(4.12), which is a discrete mode
of the complex eigenvalue α(x1, β, ω). The amplitude vector-function is expressed as

F = (F0 + εF1 + . . .) exp(i ε−1S), S =

∫
α(x1)dx1 (4.13)

Substituting (4.13) into (4.10)–(4.12) and grouping terms of the same order of
magnitude with respect to ε we obtain a sequence of problems for Fj (x1, y), j =
0, 1, . . . . In the zeroth-order approximation, the eigenvalue problem for a locally
parallel mean flow is written as (

∂

∂y
− H0

)
F0 = 0, (4.14)

y = 0: F01 = AxF04, F03 = AyF04, F05 = AθF04, F07 = AzF04, (4.15)

y → ∞: F01, F03, F05, F07 → 0. (4.16)

Here, the matrix H0 has dimension 8 × 8; its non-zero elements are given in the
Appendix. Solution of the problem (4.14)–(4.16) is expressed as

F0 = c(x1)ζ (x1, y, α), (4.17)

where ζ is the eigenvector normalized by a certain condition, such as the pressure
disturbance amplitude on the wall surface is ζ4(x1, 0, α) = 1. For spatial instability of
two-dimensional boundary layers, the frequency ω and the transverse wavenumber
component β are real, whereas α is a complex eigenvalue. If Im α < 0, then the
disturbance amplifies downstream with the spatial growth rate σα = −Im α. The
amplitude coefficient c(x1) is determined from the first-order approximation, which
leads to the inhomogeneous problem(

∂

∂y
− H0

)
F1 = −i

∂H0

∂α

∂ F0

∂x1

+ H1 F0, (4.18)

y = 0: F01 = AxF04, F03 = AyF04, F05 = AθF04, F07 = AzF04, (4.19)

y → ∞: F01, F03, F05, F07 → 0. (4.20)

The right-hand side of (4.18) is associated with the non-parallel effect; the vector
G = H1 F0 is given in the Appendix. The problem (4.18)–(4.20) has a non-trivial
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solution if its right-hand side is orthogonal to the eigenvector ξ (x1, y, α)of the adjoint
problem (

∂

∂y
+ H T

0

)
ξ̄ = 0, (4.21)

y = 0: ξ̄2 = ξ̄6 = ξ̄8 = 0, ξ̄4 + Axξ̄1 + Ayξ̄3 + Aθ ξ̄5 + Azξ̄7 = 0, (4.22)

y → ∞: ξ̄2, ξ̄4, ξ̄6, ξ̄8 → 0, (4.23)

where the upper bar denotes a complex conjugate value. The orthogonality condition
leads to the ordinary differential equation for the amplitude function c(x1)〈

ξ ,
∂H0

∂α
ζ

〉
dc

dx1

=

[
−

〈
ξ ,

∂H0

∂α

∂ζ

∂x1

〉
− i〈ξ , H1ζ 〉

]
c, (4.24)

where the scalar product is defined as

〈 f , g〉 =

∫ ∞

0

8∑
j=1

f̄ j gjdy. (4.25)

Substituting the solution of (4.24) into (4.17) and (4.13), we express the amplitude
vector in the form

F = [c0ζ (x1, y) + O(ε)]exp

(
iε−1

∫
[α(x1) + εW (x1) + O(ε2)]dx1

)
, (4.26)

W (x1) =

i

〈
ξ ,

∂H0
∂α

∂ζ

∂x1

〉
− 〈ξ , H1ζ 〉〈

ξ ,
∂H0
∂α

ζ
〉 , (4.27)

where c0 is constant. The amplification rate of any physical quantity can be calculated
using (4.26) and (4.27). For example, the x-component of mass flow disturbance is

Q(x1, y) = [c0q(x1, y) + O(ε)]exp

(
iε−1

∫
[α(x1) + εW (x1) + O(ε2)]dx1

)
, (4.28)

q = [ζ1 + (γM2
e ζ4 − ζ5/T )U ]/T . (4.29)

The disturbance growth rate is a logarithmic derivative of (4.28), which is expressed
in the form

σα(x1, y) = −Im α + ε

(
∂ ln |q(x1, y)|

∂x1

− Im W

)
+ O(ε2). (4.30)

Because of the non-parallel effect, the growth rate depends on the vertical coordinate
y. According to the experimental measurements, σα(x1, y) is calculated at y = ym

relevant to the maximum of mass-flow disturbance in the boundary layer. This
maximum lies in the critical layer, where the mean-flow velocity is close to the phase
velocity, U (y) = c.

The zeroth-order and first-order approximations of σα were validated by comparison
with the experimental data of Kendall (1967) and the calculations of Chang et al.
(1991) performed in the framework of linear parabolized stability equations (PSE).
Figure 9 shows the first-mode growth rate as a function of the non-dimensional
frequency, F = ω∗ν∗

e /U ∗2
e , for the boundary layer on a flat plate at the Mach number

Me = 2.2 and the Reynolds number R =
√

U ∗
e L∗/ν∗

e = 1000. The wave angle is
ψ = arctan(β/αr ) = 60◦. This approximately corresponds to the most unstable waves.
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Figure 9. The first-mode growth rate as a function of frequency; boundary layer on a flat plate
at Me = 2.2, R = 1000, the wave angle ψ = arctan(β/αr ) = 60◦: �, experiment of Kendall
(1967); ---, parallel theory (present); �, parallel theory, Chang et al. (1991); —, non-parallel
theory (present); �, non-parallel PSE, Chang et al. (1991).
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Figure 10. Effect of longitudinal admittance on the second-mode stability: F = 1.2385 × 10−4,
R = 2095; ---, solid wall; —, Ay = −1, Ax = 0; �, Ay = −1, Ax = exp(iϕ π/180).

The results are in good agreement with the linear PSE calculations, thereby confirming
the aforementioned model.

4.3. Admittance of porous layer and boundary conditions

Fedorov & Malmuth (2001) showed that thermal admittance produces a negligible
effect on boundary-layer stability. This finding allows us to use the boundary condition
θ = 0 at y = 0. To estimate effects of the admittance components Ax and Az,
associated with non-zero perturbations of the velocity components u, w on the
porous surface, we conducted stability calculations in a wide range of Ax and Az. This
parametric study indicates that the second-mode growth rate weakly depends on Ax

and Az. As an example, figure 10 shows the growth-rate distribution σα(ϕ) for a two-
dimensional disturbance of non-dimensional frequency F ≡ ω∗l∗/U ∗

e = 1.2385 × 10−4

for a Reynolds number R ≡ U ∗
e l∗/ν∗

e = 2.095 × 103. This case corresponds to the
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disturbance of the frequency f = 250 kHz at x∗ = 283.2 mm. The calculations
were conducted at normal admittance Ay = −1.0, transverse admittance Az = 0
and longitudinal admittance Ax = exp(iϕπ/180) with ϕ being measured in degrees.
The longitudinal admittance effect is small compared to the normal admittance
effect. This feature is due to instability of the hypersonic boundary layer being
predominantly governed by an inviscid process. For the limit R → ∞, the system
of stability equations is reduced to the two equations coupling the vertical velocity
disturbance v and the pressure disturbance p (Mack 1984). Since the other components
u, w and θ are passive, their interference with the porous layer weakly affects the
disturbance growth rate. Moreover, the felt-metal fibres lie predominantly in the
planes, which are orthogonal to the y-axis (see figure 1). Because of this anisotropy,
disturbances weakly penetrate in the x- and z-directions compared with the y-
direction, i.e. |Ax | ∼ |Az|  |Ay |. Summarizing, we approximate the boundary
conditions on the felt-metal coating as

y = 0: u = w = θ = 0, v = Ayp, (4.31)

that is equivalent to the assumption that Ax = Az = Aθ = 0.
Fedorov & Malmuth (2001) showed that the porous-layer admittance Ay is

expressed in the form

Ay =
φ

Z0

tanh(Λh), (4.32)

where φ is porosity, h = h∗/l∗ is the porous-layer thickness, Z0 and Λ are the
characteristic impedance and propagation constant of a porous media, respectively. In
the case of cylindrical holes perpendicular to the surface, the characteristic impedance
and propagation constant are expressed as a function of the series impedance and
the shunt admittance for the tube element of unit length using the transmission
line formalism (Daniels 1950; Benade 1968). The same analytical solution can be
obtained in terms of the complex dynamic density ρ̃ and the complex dynamic
compressibility C̃ (see, for example, Johnson, Koplik & Dashen 1987). Hereafter,
we use the latter approach, which is more convenient for analysis of acoustic
disturbances in randomly porous media. Accordingly, the characteristic impedance
and the propagation constants are expressed as

Z0 = −
√

ρ̃/C̃

Me

√
Tw

, Λ =
iω Me√

Tw

√
ρ̃/C̃, (4.33)

where ρ̃ = ρ∗(ω)/ρ∗
w and C̃ = γP ∗

w/K∗ (ω); K∗(ω) is the dynamic bulk modulus; ρ∗
w

and P ∗
w are mean density and static pressure in the porous layer, respectively.

The problem of disturbance propagation within the porous layer is decoupled
from the boundary-layer stability problem. The former can be treated as a problem of
acoustic wave propagation in a porous media, which is characterized by the quantities
ρ̃ and C̃. Unfortunately, there is no rigorous theory to predict these characteristics for
porous materials of random microstructure. Delany & Bazley (1970) gave empirical
relations for ρ̃ and C̃ for fibrous absorbent materials. These relations are widely used
in various applications such as sound attenuation in ducts, room acoustics and the
transmission loss through walls. Allard & Champoux (1992) modified the correlation
of Delany & Bazley (1970) using the theoretical results of Johnson et al. (1987). They
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Figure 11. An elementary cell of the felt-metal microstructure; b × b × 2d parallelepiped
including two adjoining sections of fibres with diameter d and mutually orthogonal axes.

derived the semi-empirical relations

ρ̃ = a∞

[
1 +

g(λ1)

λ1

]
, C̃ = γ − γ − 1

1 + g(λ2)/λ2

, (4.34)

g(λ) =

√
1 +

4a∞µ∗λ

σ ∗ φr∗2
p

, (4.35)

λ1 = ia∞ρ∗
wω∗/(φσ ∗), λ2 = 4Prλ1. (4.36)

Here, σ ∗ is the flow resistivity determined from the equation

�P ∗ = −σ ∗�Z∗W̄ ∗, (4.37)

which couples the steady pressure drop �P ∗ of viscous flow with the mean flow
velocity W̄ ∗ through the porous layer of thickness �Z∗. The parameter a∞ is the
tortuosity, which is equivalent to the structure form factor ks of Zwikker & Kosten
(1949) or to the parameter q2 of Attenborough (1987). It is coupled with the dynamic
density ρ̃(ω) as a∞ = limω→0 ρ̃(ω). The characteristic pore size is defined as

r∗
p =

2

∫
V

|W ∗(r∗)|2 dV ∗

∫
S

|W ∗(r∗
S)|2 dS

. (4.38)

The integral in the numerator is evaluated over the pore volume, and W ∗(r∗) is the
velocity vector of inviscid fluid within the pore; r∗ is the radius vector of the point
inside the pore volume for which the fluid-velocity vector is defined. The integral
in the denominator is taken over the pore surface, and W ∗(r∗

s ) is the fluid velocity
vector on the pore surface. For isotropic porous materials, Allard & Champoux

(1992) showed that r∗
p = sh

√
8 µ∗ a∞/σ ∗ φ, where sh is the dimensionless shape factor.

However, this relation seems not to be valid for the felt-metal, which is highly
anisotropic. To resolve this difficulty, we note that the shape factor is sh ≈ 1 in the
case of cylindrical pores (not necessarily circular), if the fluid velocity is constant.
Accordingly, the characteristic pore size r∗

p can be treated as a hydraulic radius, i.e.
it is a ratio of the doubled cross-sectional area to the cross-sectional perimeter. To
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Figure 12. The absorption coefficient Ka versus the sound frequency f at the ambient
pressure; —, correlation (4.34)–(4.36); �, laboratory measurements.

estimate r∗
p , we consider an elementary cell (see figure 11) simulating topology of the

felt-metal microstructure. The cell is assumed to have the same average statistical
properties as the actual porous layer. Accordingly, the characteristic pore size r∗

p

and the porosity φ are expressed in terms of the fibre diameter d∗ and the cell size
b∗ as

r∗
p = 4b∗/(1 + πd∗/4b∗), φ = 1 − πd∗/4b∗. (4.39)

Using (4.39), we represent r∗
p as a function of the quantities φ and d∗, which can be

measured experimentally,

r∗
p =

πd∗

2(1 − φ)(2 − φ)
. (4.40)

Using the method of acoustic standing waves S. Mironov (ITAM) performed
laboratory measurements of the felt-metal energy absorption coefficient Ka = 1−|Rref|2
(where Rref is the reflection coefficient for plane acoustic waves of normal incidence)
and coordinates of nodes for standing waves in the resonance tube. The measurements
were conducted in the frequency band 1–6 kHz, for which the non-dimensional
arguments λ1,2 of the correlation (4.34)–(4.36) correspond to the wind-tunnel con-
ditions. The best fit of the experimental data gives the felt-metal flow resistivity
σ ∗ = (1.66 ± 0.21) × 105 kg (m3 s−1) assuming that the tortuosity a∞ = 1 and the
porosity φ = 0.75. With these parameters the relations (4.34)–(4.36) have been used for
stability calculations discussed in § 5. Note that 12.6% uncertainty of σ ∗ is due to a
relatively large scatter of the absorption coefficient measurements shown in figure 12
along with the prediction based on (4.34)–(4.36). However, stability calculations of
§ 5 show that this uncertainty weakly affects the second mode amplification (see
figure 16).

Under wind-tunnel conditions, the flow density is relatively small (∼1% of the
normal density). Because the characteristic pore diameter is also small, rarefied gas
effects need to be evaluated. Our estimates show that the mean free path in the
porous layer is λ∗

mfp ∼ 10 µm. Using the pore diameter 2r∗
p as a characteristic length

scale we obtain the Knudsen number Kn = λ∗
mfp/2r∗

p ∼ 3 × 10−2, i.e. the Knudsen-layer
thickness is only a few per cent of the pore diameter, and rarefaction effects can be
neglected.
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Figure 13. (a) Growth rate of two-dimensional disturbances vs. frequency at x = 200.1 mm
(R = 1761.2); locally parallel approximation. (b) Maximum growth rate of three-dimensional
disturbances vs. frequency at x = 200.1 mm (R = 1761.2); locally parallel approximation.
(c) The wave angle ψ = arctan(β/αr ) of the most unstable three-dimensional waves vs.
frequency at x = 200.1 mm (R = 1761.2); locally parallel approximation. —, porous wall; ---,
solid wall.

5. Stability calculations and comparison with experiment
The first series of stability calculations has been conducted in the local parallel

approximation using the systemof equations (4.14)–(4.16). Figure 13(a) shows the
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Figure 14. Growth rate of two-dimensional disturbances vs. frequency at x =283.2 mm
(R =2095); locally parallel approximation. Maximum growth rate of three-dimensional
disturbances vs. frequency at x =283.2 mm (R = 2095); locally parallel approximation. ---,
solid wall; —, porous wall.

growth rate, σ ∗
α = −Im α∗, of two-dimensional disturbances (β =0) as a function

of the disturbance frequency f at the streamwise coordinate x∗ =200.1 mm. The
porous coating strongly stabilizes the second mode relevant to the high-frequency
band, 225< f < 375 kHz; whereas the first mode associated with low frequencies, f <

225 kHz, is marginally destabilized. Figure 13(b) shows similar trends for the maximum
growth rate, σ ∗

α,max = max[σ ∗
α (β)], of three-dimensional disturbances. Figure 13(c)

shows the wave angle, ψ = arctan(β/αr ), of the most unstable waves. The low-
frequency disturbances of maximum amplification are oblique waves relevant to the
first mode. In the high-frequency band, the most unstable disturbances are two-
dimensional waves (with ψ = 0) of the second mode. Similar trends are observed
in the case of x∗ = 283.2 mm shown in figure 14. These results are in qualitative
agreement with the experimental data for ‘natural’ disturbances discussed in § 3.

Figure 15 compares theoretical amplification curves with experimental data for
the two-dimensional component of an artificially excited wave packet of frequency
f = 280 kHz. (See curves (i) and (ii) in figure 7.) In these calculations, the initial
amplitudes are adjusted to experimental data at the first data point. For the solid-
wall case, the theoretical growth rate is essentially larger than the experimental one,
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Figure 15. Amplification of the two-dimensional component for the artificially excited wave
packet of frequency f = 280 kHz; locally parallel theory versus experiment.
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Figure 16. Amplification of the two-dimensional component for the artificially excited wave
packet of frequency f = 280 kHz; non-parallel theory versus experiment; —, the felt-metal
flow resistivity σ ∗ = 1.66 × 105 kgm−3 s−1, · · · , σ ∗ = (1.66 ± 0.21) × 105 kgm−3 s−1.

i.e. the locally parallel approximation gives only qualitative agreement with stability
measurements.

To perform a more accurate comparison, we accounted for the non-parallel effect
using the first-order approximation, (4.30). According to experimental measurements,
the disturbance growth rate σ ∗

α (x1, y) was calculated at the vertical coordinate, y = ym,
relevant to the maximum of mass-flow pulsations. Figure 16 shows that with this
correction, theoretical growth rates (slopes of the amplification curves) are remarkably
close to experimental data in the region 190 <x < 260 mm, especially for the porous
surface. The dotted lines indicate that an approximately 12% uncertainty in the
laboratory measurements of the felt-metal resistivity σ ∗ leads to much smaller changes
of the amplification curve.
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Figure 17. Growth rate of two-dimensional disturbances as a function of frequency f
at various x, Tw = 2Te , Re1 = 107 m−1; locally parallel approximation; (i) x∗ = 206.35mm,
(ii) x∗ = 298.72 mm, (iii) x∗ = 406.05mm, (iv) x∗ = 515.79mm. ---, solid wall; —, porous wall.

Finally, we discuss a combination of the UAC and wall cooling effects on the
boundary-layer disturbances. We consider the boundary layer at local Mach number
Me = 5.3, wall temperature T ∗

w = 2T ∗
e (Tw/Tad ≈ 0.35) and the local unit Reynolds

number Re1e =107 m−1. Stability calculations for various β show that, in contrast
to the adiabatic wall case, the most unstable waves are two-dimensional for both
low and high frequencies. Seemingly, wall cooling leads to a stronger stabilization
of the first-mode oblique waves than the two-dimensional waves. Figure 17 shows
the growth rates of two-dimensional disturbances as functions of the frequency f at
various x∗ stations. The porous coating leads to a dramatic reduction of σα for high
frequencies associated with the second mode instability. In the low-frequency band
of the first mode, the coating causes a marginal increase of σα . However, the wall
cooling leads to such a strong stabilization of the first mode that the low-frequency
waves are stable everywhere. This example demonstrates that the porous coating on
a cold wall causes a massive damping of unstable disturbances. Note that for actual
hypersonic vehicles, the wall temperature ratio is small (less than 0.2) enough to
eliminate the first-mode instability. With the help of a passive porous coating, it is
feasible to diminish the second-mode instability and significantly increase the laminar
run on hypersonic vehicle surfaces.

6. Conclusions
Experimental and theoretical studies of hypersonic boundary-layer stability were

performed for ultrasonically absorptive coatings (UAC) of random microstructure.
Such structures typify practical TPS materials. Stability of natural disturbances and
artificially excited wave packets in the boundary layer on solid and porous surfaces
of a sharp cone were measured in the ITAM Mach 6 wind tunnel. These results were
compared with stability analyses that included theoretical simulations of the UAC
characteristics.

The experiments were conducted on a 7◦ half-angle sharp cone, one half of which
is solid and the other covered by a thin porous coating of random microstructure.
Hot-wire measurements showed that boundary layers on solid and porous surfaces
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are laminar. The mean flow profiles are similar in both cases and agree with the
self-similar solution of the boundary-layer equations. The hot-wire measurements
of ‘natural’ disturbances showed that the disturbance spectra on the solid surface
are typical for hypersonic boundary layers, with the second mode being dominant.
On the porous surface, the second mode is so strongly suppressed that it is not
observable in the measurement region, while the first mode becomes unstable. To
investigate the second mode stabilization effect, artificial wave packets were generated
in the boundary layer at a frequency relevant to the second mode instability. Two-
dimensional waves of the wave packets were dominant and unstable on the solid
surface. Additionally, the porous coating reduced the second-mode growth rate.

A linear stability problem was formulated for the boundary layer on a sharp cone
with and without a porous coating. A major effect of the coating is associated with
porous-layer admittance to vertical velocity disturbances. Non-zero perturbations of
the longitudinal and transverse velocity components on the porous surface weakly
affect the second-mode instability and can be neglected. With this approximation, the
porous coating admittance was determined using the semi-empirical relations of Allard
& Champoux (1992) and laboratory measurements of the felt-metal characteristics.

Stability calculations for two- and three-dimensional disturbances showed that the
felt-metal coating strongly stabilizes the second mode relevant to the high-frequency
band and marginally destabilizes the first mode of relatively low frequencies. These
results are in qualitative agreement with experimental data for natural disturbances.

Comparison of the theoretical amplification curves with the experimental data
for a two-dimensional component of an artificially excited wave packet showed
that the theoretical growth rate is larger than the experimental one. The locally
parallel approximation of the stability problem gives only qualitative agreement
with the stability measurements. The mean-flow non-parallel effect, associated with
the downstream growth of the boundary layer, was incorporated into the stability
analysis. With this correction, theoretical growth rates are remarkably close to
experimental data (especially for the porous wall case), which confirms the theoretical
model.

Stability calculations for the cooled-wall case indicated that wall cooling leads to a
strong stabilization of the first mode, while the second mode is effectively suppressed
by the porous coating. For actual hypersonic vehicles, the wall temperature ratio
is small (less than 0.2), which eliminates the first-mode instability. Using a passive
porous coating, it is feasible to diminish the second-mode instability and significantly
increase the laminar run on actual hypersonic vehicle surfaces with predominantly
two-dimensional boundary layers.
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Appendix
D = d/dy, µ′ = dµ/dT , m = 2

3
(e − 1), r = (e + 2), where e = 1.2 corresponds to

the ratio of the second viscosity to the first viscosity µ2/µ = 2
3
e = 0.8; χ =

[(R/µ) + irγM2
e (αU − ω)]−1. Non-zero elements of the matrix H0 in (4.14) are

H12 = H56 = H78 = 1;

H21 = α2 + β2 + i(αU − ω)
R

µT
, H22 = −Dµ

µ
,

H23 = −iα

[
(m + 1)

DT

T
+

Dµ

µ

]
+

RDU

µT
,

H24 = i
αR

µ
− (m + 1)γM2

e α(αU − ω), H25 = (m + 1)
α

T
(αU − ω) − D(µ′DU )

µ
,

H26 = −µ′DU

µ
;

H31 = −iα, H33 =
DT

T
, H34 = −iγM2

e (αU − ω), H35 =
i

T
(αU − ω), H37 = −iβ;

H41 = −iαχ

(
r
DT

T
+ 2

Dµ

µ

)
, H42 = −iαχ,

H43 = χ

[
−α2 − β2 + r

DµDT

µT
+ r

D2T

T
− i

R

µT
(αU − ω)

]
,

H44 = −iχrγM2
e

[
αDU +

(
DT

T
+

Dµ

µ

)
(αU − ω)

]
,

H45 = iχ

[
rα

DU

T
+ α

µ′DU

µ
+ r

Dµ

µT
(αU − ω)

]
,

H46 = iχ
r

T
(αU − ω), H47 = −iβχ

(
r
DT

T
+ 2

Dµ

µ

)
, H48 = −iβχ ;

H62 = −2 Pr(γ − 1)M2
e DU, H63 = R Pr

DT

µT
− 2iα(γ − 1)M2

e PrDU,

H64 = −iR Pr
(γ − 1)M2

e

µ
(αU − ω),

H65 = α2 + β2 + iR Pr
(αU − ω)

µT
− (γ − 1)M2

e Pr
µ′(DU )2

µ
− D2µ

µ
, H66 = −2

Dµ

µ
;

H83 = −iβ

[
(m + 1)

DT

T
+

Dµ

µ

]
, H84 = i

βR

µ
− (m + 1)γM2

e β(αU − ω),

H85 = (m + 1)
β

T
(αU − ω), H87 = α2 + β2 + i(αU − ω)

R

µT
, H88 = −Dµ

µ
.

The vector G = H1 F0 in (4.18) is expressed as

F0 ≡ (f1, f2, . . . , f8)
T ,

G1 = G5 = G7 = 0,

G2 =
R

µ

[
f1

T

∂U

∂x1

+
V0

T

∂f1

∂y
+

(
γM2

e f4

T
− f5

T 2

)(
U

∂U

∂x1

+ V0

∂U

∂y

)]
,
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G3 =
f1

T

∂T

∂x1

+ γM2
e f4

U

T

∂T

∂x1

− f5

2U

T 2

∂T

∂x1

−
(

γM2
e f4 − f5

T

)(
∂U

∂x1

+
∂V0

∂y

)

− γM2
e V0

[(
∂f4

∂y
− f4

T

∂T

∂y

)
− 1

T

∂f5

∂y
+

2f5

T 2

∂T

∂y

]
,

G4 = − 1

T

(
V0

∂f3

∂y
+ f3

∂V0

∂y

)
,

G6 = −RPr

µ

[
−V0

T

∂f5

∂y
−

(
γM2

e f4

T
− f5

T 2

)(
U

∂T

∂x1

+ V0

∂T

∂y

)

+ (γ − 1)M2
e

(
V0

∂f4

∂y
− f1

T

∂T

∂x1

)]
,

G8 =
R

µ

V0

T

∂f7

∂y
.
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